Isotropic Gaussian Random Fields on the Sphere: Regularity, Fast Simulation and Stochastic Partial Differential Equations

نویسندگان

  • ANNIKA LANG
  • CHRISTOPH SCHWAB
چکیده

Isotropic Gaussian random fields on the sphere are characterized by Karhunen–Loève expansions with respect to the spherical harmonic functions and the angular power spectrum. The smoothness of the covariance is connected to the decay of the angular power spectrum and the relation to sample Hölder continuity and sample differentiability of the random fields is discussed. Rates of convergence of their finitely truncated Karhunen–Loève expansions in terms of the covariance spectrum are established, and algorithmic aspects of fast sample generation via fast Fourier transforms on the sphere are indicated. The relevance of the results on sample regularity for isotropic Gaussian random fields and the corresponding lognormal random fields on the sphere for several models from environmental sciences is indicated. Finally, the stochastic heat equation on the sphere driven by additive, isotropic Wiener noise is considered, and strong convergence rates for spectral discretizations based on the spherical harmonic functions are proven.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical solution of second-order stochastic differential equations with Gaussian random parameters

In this paper, we present the numerical solution of ordinary differential equations (or SDEs), from each order especially second-order with time-varying and Gaussian random coefficients. We indicate a complete analysis for second-order equations in special case of scalar linear second-order equations (damped harmonic oscillators with additive or multiplicative noises). Making stochastic differe...

متن کامل

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Multivariate Gaussian Random Fields Using Systems of Stochastic Partial Differential Equations

In this paper a new approach for constructing multivariate Gaussian random fields (GRFs) using systems of stochastic partial differential equations (SPDEs) has been introduced and applied to simulated data and real data. By solving a system of SPDEs, we can construct multivariate GRFs. On the theoretical side, the notorious requirement of non-negative definiteness for the covariance matrix of t...

متن کامل

Thermo-elastic analysis of a functionally graded thick sphere by differential quadrature method

Thermo-elastic analysis of a functionally graded hollow sphere is carried out and numerical solutions of displacement, stress and thermal fields are obtained using the Polynomial differential quadrature (PDQ) method. Material properties are assumed to be graded in the radial direction according to a power law function, ho...

متن کامل

Fast generation of isotropic Gaussian random fields on the sphere

The efficient simulation of isotropic Gaussian random fields on the unit sphere is a task encountered frequently in numerical applications. A fast algorithm based on Markov properties and Fast Fourier Transforms in 1d is presented that generates samples on an n×n grid in O(n logn). Furthermore, an efficient method to set up the necessary conditional covariance matrices is derived and simulation...

متن کامل

Numerical solution and simulation of random differential equations with Wiener and compound Poisson Processes

Ordinary differential equations(ODEs) with stochastic processes in their vector field, have lots of applications in science and engineering. The main purpose of this article is to investigate the numerical methods for ODEs with Wiener and Compound Poisson processes in more than one dimension. Ordinary differential equations with Ito diffusion which is a solution of an Ito stochastic differentia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014